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An Iterative Extension of Prony's Method for
ARMA Signal Modeling*

Charles W. Therrien and Carlos H. Velasco
Department of Electrical and Computer Engineering

Abstract

A new iterative version of the Prony method is presented and shown to be
exceptionally effective in finding ARMA models for acoustic data in the signal
domain. The method is based on a quadratic type of gradient algorithm where it
is shown that the gradient and Hessian are easily computed from the data. The
new algorithm is found experimentally to have excellent convergence behavior.
The performance of the algorithm is demonstrated and compared to that of the
basic Prony method and to that of the Steiglitz and McBride iterative prefiltering
algorithm on some recorded acoustic data.

1 Introduction

Linear pole-zero (ARMA) models are used for a variety of applications in signal pro-
cessing. These applications include speech and image coding, spectrum estimation, and
others. Both deterministic and stochastic methods for signal modeling have been stud-
ied extensively in the literature. Typically deterministic models attempt to represent
the signal as the impulse response of a suitably chosen linear system while stochastic
methods attempt to model the signal as the response of the linear system to white noise.
However in many cases the procedures embedded in these methods (such as estimating
a correlation matrix for the data) are similar so the philosophical distinction between

*This work was sponsored by the Office of Naval Research.
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deterministic and stochastic models is of less significance. A review of various methods
can be found in many places such as [1 2, 3).

In our application we are interested in reproducing the time domain waveform as
accurately as possible (as measured e.g., by the sum of squared errors). To do this
frequently requires modeling procedures that can produce nonninimum-phase transfer
functions [4, 5] and this eliminates most of the stochastic methods. Consequently, it is
most appropriate here to think of the signal as being modeled as the impulse response
of a linear system and seek to minimize the sum of squared errors between this impulse
response and the given data.

A well known approach to the modeling problem is Prony's method, where the data
is represented in the time domain by a sum of damped exponentials with appropriate
weighting coeffients. Prony's method avoids the direct nonlinear problem of minimizing
the sum of squared errors and solves a pair of linear problems. However in many cases
involving real data this results in a suboptimal model as shown for the acoustic data
(corresponding to the ringing of a wrench hit on the floor) in Fig. 1(a). In this paper we
present a method for iteratively adjusting the parameters (poles and zeros) in Prony's
method to values that further minimize the sum of squared errors. The method, which
we call the iterative Prony method, produces a much improved model as shown in Fig.
1(b).

Iterative methods for ARMA modeling are not new [6, 7, 8, 9, 10]. Most stochastic
methods involving maximum likelihood solutions involve iteration (see e.g., [6]) and a
very effective method known as iterative prefiltering [7, 8] is capable of results similar
to the iterative Prony method. The latter, like many other methods (e.g., [9)). uses the
polynomial coefficients as the parameters and thus does not have a clear interpretation
in terms of placement of poles and zeros. Iterative prefiltering can also lead to oscillatory
behavior in the sum of squared errors while the iterative Prony method typically results
in a monotonic decrease of the error norm and seems to have better behavior when the
model order is not known.

The remainder of this paper is organized as follows. Section 2 states the basic form of
the modern Prony method and establishes our notation. Section 3 develops the iterative
Prony algorithm. Section 4 gives an example and comparison of performance on recorded
acoustic data. Section 5 provides a summary and conclusions.
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Figure 1: Approximately 10 ms segment of the sound corresponding to the ringing of
a wrench hit on the floor. (a) Model produced by the (non-iterative) Prony method (4
poles and 3 zeros). (b) Model produced by the iterative Prony method (also 4 poles and
3 zeros).
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2 Prony's Method of ARMA Modeling

Although there are many variations (see [11, Chapter 11]), the modern Prony method
can be thought of as a method for approximating a data sequence x[n] by a sequence
i[nl which is the impulse response of a rational linear system satisfying the difference
equation

t(n] + a[n - 1] +... + ap[n - P] = bob[n] + bi[n - 1] +... + bQ6[n - Q]
(1)

If the requirement i[n] - x[n]; n = 0, 1..., N. - 1 is applied to (1), where A' is the
length of the data, and the difference equation is evaluated for n = 0. 1,., 8A - 1, the
result is the matrix equation

o01 0 0 ... o0
x[1] 4[O] 0 ..- 0 bi
x[2] X[1] X[O] -. 0 12

a1
a 2 = (2)

x[Q] x[Q-1] x[Q- 2] ... x[Q-P] ) bQ
x[Q +] x1Q] x[Q-1] ... x[Q-P+I] 0

ap

L[1V - 1] 4[N. - 2] x[4N - 3] ... x[g,- P - 1] 0

which can be written in partitioned form as

[B a b (3)

Thus if N. >_ P + Q + 1 a least squares solution for the ai (AR) parameters can be found
from the lower set of partitions, and the upper set of partitions can be used to find the
bi (MA) parameters. This is the fundamental idea underlying Prony's method.

Prony's method is frequently expressed directly in the signal domain. Instead of
solving (3) for the vector b, we can instead find the roots of the denoniimator polynomial
of the system in (1)

A(z) = 1 + alz- 1 + a2z- 2 + + apz-P (4)

4



and express the impulse response *[n) in terms of these roots. Specifically if rl, r2,..., rp

are the roots of (4) (assumed to be distinct) then i[n) can be written as

.[n] = cir• + c2rn +... + cpr' (5)

Again, if we require i[n] = x[n]; n = 0,1... ,N, - 1, then by evaluating (5) for
n = 0, 1,..., N, - 1 we have the matrix equation

1 1 ... 1 x[O)
r ½ r2 ... rp [ [1)

1 ... 22 C2

r, r2 rp I .- ,l..[N - 1]

which can be solved in a least squares sense to obtain the coefficients ci. This implemen-
tation of Prony's method has an advantage over simply solving for b from (3) since all
of the data is used in the computation. When (2) or (3) is used to find the bj, only the
data values from 0 to Q are used in the computation.

In the case of multiple roots at the same location a slight variation of the same
procedure can be used. Suppose, for example, that r, is a double root. In this case, i[n]
has the form

5[nl = cir' + C2nrn + .'-. + cpr;, (7)

and the matrix equation to solve for the coefficients becomes

1 0 1 -.- 1 1 x [10
ri r, r3 .. X[1]

r, 2r.. = 4[21 (8)

rE'-1 (N. - 1)rN--' rN-3 -.. r -I cp z[N. - 1])

This situation is rare however, because computational errors and errors inherent to the
modeling method itself contribute to produce roots that may be very close to each other
but not exactly at the same location.

While Prony's method represents a clever scheme to separate the solution of the AR
and MA parameters in the modeling problem, the separation is frequently achieved at the
cost of a degradation in performance, as mentioned in the introduction. It is well known,
for example, that Prony's method does not choose the AR parameters to minimize any
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norm of the error e[n] = x[n] - i[n] but rather chooses them to minimize the norm
of a modified error of linear prediction resulting from processing the original data z[n]
through the filter represented by A(z). As a result, there is motivation to modify the
model obtained by Prony's method through an iterative scheme that seeks to directly
minimize the norm of the error e[n]. This method retains the separability of the original
Prony method and so is called the iterative Prony method. It differs from maximum
likelihood in that there is no stochastic criterion and it does not attempt to solve for the
AR and MA parameters simultaneously. The method is developed below.

3 An Iterative Prony Algorithm

3.1 Iterative Algorithms

A multidimensional function Q(rl, r2,• rp) that is continuous and differentiable can be
minimized using one of several very powerful optimization techniques known as gradient
methods [12]. Some of those methods are derived on the basis of a quadratic model that
can be obtained from a truncated Taylor series expansion of Q(r). Let r(k) denote the
value of r at the kth iteration. Then for any point r = r(k) + 6 when 6 is small, the
function can be approximated by

Q(r(k) + -6) - q(k)(,6) = Q(k) + g(k)T 6 + b1TG(k)b (9)

where g and G represent the vector of first derivatives (gradient) and the matrix of second
derivatives (Hessian) of the function Q(r) and they should be available at every point.
In Newton's method the iterate r(k+l) is taken to be rMk) + 6 (k), where the correction
6 (k) minimizes q(k)(b). This method is only well defined when the Hessian matrix G
is positive definite, in which case the kth iteration of Newton's method is given by the
following procedure [13]:

1. solve G(k)6 = _g(k) for A = 6 (k)

2. set r(k+l) = r(k) + 6(k) (10)

The fact that G(k) may not be positive definite when x(k) is far from the solution, and
that even when G(k) is positive definite convergence may not occur, makes this method
undesirable as a general formulation of a minimization algorithm.

Since Newton's method is defined only when the matrix G(kM is positive definite, and
this matrix is positive definite only when the error b is "small", we can say that the
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method is defined only in some neighborhood W1() of r(k) in which q(k)(6) agrees with
Q(r(k) + 6) in some sense. In such cases, it is correct to choose r(k+l) - r(k) + 6(k), with
the correction 6 (P) minimizing q(k)(6) for all r(k) + 6 in W1). This method is referred to

as the restricted step method because the step is restricted by the region of validity of the
Taylor series [13]. The region of definition for the kth iteration can then be expressed as

n(k) - {r :r - r (k)Il5 h(k)} (11)

where ]. ] denotes the norm of the vector. In this case. the optimization problem can
be stated as:

minimize6 q(k)(6) subject to 11611 < h(k) (12)

As mentioned before, the least squares norm II" 112 is the one most commonly used in
these type of problems so it is the one used in this paper. The problem that now becomes
apparent is how to select the error margin h(k) of the neighborhood (11). This margin
should be as large as possible because the iteration step is directly related to it. Various
methods have been proposed to control the parameter h(k). One of these methods [131
attempts to insure that the Newton's minimization problem (10) is always defined by
adding a multiple of the unit matrix I to G(k) and computing the new problem

(G(k) + VI) 6 (k) = -g(k) (13)

where the net effect is that increases in v cause 116112 to decrease, and vice versa.
If we define

_(k) = Q(k) Q(k) _ Q(r(k) + 6(k) (14)
~q~k) = lQ(k) _ q(k)( 6 (k))

then the ratio p(k) rpresents a measure of the accuracy to which q(k)( 6 (k)) approximates

Q(r(k) + 6 (k)) on the kth step, and as the accuracy increases p(k) gets closer to unity.
Using (14), Marquardt [14] suggested an algorithm that tries to adaptively maintain h(k)
as large as possible while controlling the ratio p(k). The k th iteration of such an algorithm
is stated as

1. given r(k) and V(k), calculate g(k) and G(k):

2. factor G(k) + V~k)I; if not positive definite, reset V(k) = 4v(k) and repeat;

3. solve (13) to find 6 (k);

4. evaluate Q(r(k) + 6 (k)) and hence p(k),



5. p(') < 0.25 set ,(k+l) = (k)

else if p(k) > 0.75 set V(k+÷) = -(k)/2

else set V(k++) = V(-);

6. if p(k) < 0 set r(k+l) = r(k) else set r(k+l) = r(k) + 6').

Here the parameters 0.25, 0.75, 4 and 2 are arbitrary and 0A') > 0 is also chosen arbi-
trarily. Proofs of global and second order convergence for this algorithm are given in [13]

for the cases when the first and second derivatives of the function Q(r) exist, and the
vector r(k) belongs to a bounded n-dimensional space for all k. Although this method

does have some disadvantages, it represents a good basis for the formulation of a general
minimization algorithm.

3.2 Computation of Derivatives

Let us now return to the problem of representing a sequence x[n] as a linear combination
of complex exponentials. Equation 6 can be written as

Rc = x + e (15)

where e is the equation error, x represents the data, which may or may not be complex,

c is the vector of complex coefficients, and R is the matrix of complex roots, which can
be written in terms of real and imaginary parts as

1 1 ... 1

rR, + jrl, rR2 + jrl2  "'" rRp + jrip

R= (rR. + jr'l)2  (rR. + jrj,) 2  "" (rRp + jrjp)2 (16)

(rR , + jrZ, )N'A (rR, + jrl,)N'- (rR, + jrlp)N°-I

By defining
Q(r) = lIe 112 = .C = (Rc - x)*T (Rc - x) (17)

it is clear that the problem is to find the vector r = rR + jr, of P complex roots that
minimizes the function Q(r).

8



To make the following development less cumbersome let us define the gradient oper-
ator with respect to the real and imaginary parts of the roots as

8,R

dTR2

a

Vr V a'rR (18)

r, &t'a~,

a
L 'rlp j

Then the gradient vector g of first derivatives and the Hessian matrix G of second
derivatives can be written compactly as

g=VQ= V,Q (19)

and
[(Q)Td [ (VrRQ)T VrR (VrjQ)T

V = r = L Vr. (VrRQ) T  V, (Vr, Q)T (20)

Note that it is essential to work with the derivatives involving the real and imaginary
parts of the roots rather than the complex roots themselves because Q(r) in (17) is not
an analytic function of the complex variables ri, r2,..., rp. It is shown in the appendix
that the upper and lower partitions of g are given by

VrRQ = 2 Re {fF } (21)

and
VrQ = 2 Im{F T e1} (22)

where F is a matrix with columns fi defined by

0
1

d el 2ri
fd 3r? 3 (23)

( 93 - 1)r-' 2

• • , , i i i l I I I 9



Further, if S is defined as the matrix with columns

0
0
2

sid 6ri Ci (24)

12r?

(N. - 1)(A. - -3

then it can be shown (see appendix) that the partitions of G are given by

VrR(VrRQ)T = 2Re {F'T F + diag (S*T e)} (25)

VrR(Vr Q)T = 21m IF TF - diag (S'•e)1 (26)

Vr,(VrRQ)T = -21m {F'F - diag (S"e)} (27)

Vri(VrQ)T = 2Re {F T F - diag (S-Te)} (28)

where the notation "diag " applied to a vector represents the operation of forming a
diagonal matrix whose components are the components of the vector. Thus the gradient
g and Hessian G are convenient to compute.

3.3 Real Axis Poles and Zeros

Some discussion is necessary about how the iterative Prony algorithm handles poles and
zeros on the real axis. When such poles and zeros occur, the imaginary parts and all of
the associated derivatives are zero. Thus poles and zeros initially on the real axis remain
on the real axis through all successive iterations. This can be a practical disadvantage
because the original Prony algorithm, which is used to produce the starting configuration
of poles and zeros, can sometimes place a pair of poles or zeros on the real axis, while in
fact this pair really belongs off of the real axis in a conjugate symmetric configuration.
In this situation the method so far described will never reach the true configuration. A
modification is therefore introduced to deliberately displace those roots from the real
axis. The algorithm places the roots in a conjugate symmetric position by calculating
the mean of their values and adding to them a small arbitrary offset in the imaginary
direction, and proceeds with the iterations. If the tendency of the roots is to "go back" to
the real axis then they are returned to their initial position and the iterations continue.

10



1

0.8 * - poles before iterations
0.8

0.6 x = poles during iterations

0.4 o = zeros during iterations

0.2-

0 -

-0.2-,

-0.41 Re[]

Figure 2: Displacement of the poles and zeros of an order (4,3) model; the modeled signal
in this case actually has two poles on the real axis.

Otherwise the roots may continue to spread apart and move as a complex pair. Figure
2 is an example of the displacement of the poles and zeros of an order (P, Q) = (4, 3)
model. In this case the modeled signal actually has two poles on the real axis and the
initial model correctly placed two of the poles on the real axis. Those poles are displaced
from the real axis by an amount of approximately 0.3 in the imaginary direction by the
algorithm, but then after some iterations it is clear that the poles are tending to return
to the real axis. At this point the poles are returned to the real axis by setting their
imaginary parts to zero and the iterations continue until convergence is obtained. The
opposite situation is shown in Figure 3. In this case the initial model also has two poles
located on the real axis, but contrary to the case presented above, the roots, after being
displaced from the real axis, (again by an amount of 0.3), continue to move away from
the axis until they reach their final position in the first and fourth quadrants closer to
the unit circle.

11



1

0.8- * poles before iterations

0.6 x = poles during iterations

0.4 o = zeros during iterations =I

.M 0.2-

1 ' o o o o a "0

.� -0.2-

-0.4

"-0.6 I

-0.8 s

-1 real axis

Figure 3: Displacement of the poles and zeros of an order (4,3) model. The initial model
shown has poles on the real axis; the final model in this case has those poles moved to
conjugate symmetric locations.
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4 Performance Comparison

The iterative Prony method has been tested on a large variety of data including both
simulated and recorded sonar and speech data. In testing, we compared the performance
of the new iterative Prony algorithm to that of the iterative prefiltering algorithm, which
previously had been found to be the algorithm most suitable for our work in waveform
modeling of acoustic data in the signal domain [5]. In tests on simulated data, we found
that when the correct order of the model is known and it is used to model the data, then
both iterative algorithms tested produced very good models. However. when given an
order higher than the true order of the signal, the iterative prefiltering algorithm tended
to oscillate and took longer to reach convergence. On the other hand, in most cases the
performance of the iterative Prony method was not affected by this change in the order
of the model. The final model would simply have extra poles and zeros positioned to
cancel each other.

On the real recorded data we found that in all cases the iterative Prony method
provides much better models than the regular (non-iterative) Prony method. In many
cases, the performance of the iterative prefiltering method was comparable to that of
the iterative Prony method, but in a large number of cases the error produced by the
iterative prefiltering algorithm was highly oscillatory. The same number of iterations
was used for both the iterative Prony and the iterative prefiltering methods in all of the
tests. In order to obtain the best possible results from the iterative prefiltering algorithm
(especially in those cases when there was no convergence), the model selected was that
corresponding to the iteration with the lowest error between the model and the original
sequence.

Figure 4 shows the results of modeling a 100-point segment (approximately 8 ms)
of underwater recorded data (ice cracking). The signal was modeled using the signal
domain Prony method of section 2 and the two iterative algorithms mentioned above. A
model of order (12,11) was used in all cases. It is clear that the models produced by the
iterative methods (Fig. 4(b) and (c)) represent the original signal much more faithfully
than the model produced by the non-iterative method (Fig 4(a)). It can also be seen that
the model produced by the iterative Prony method provides a much better representation
of the original signal than the model produced using the iterative prefiltering algorithm.
Figure 5 shows the behavior of the sum of squared errors at each iteration between the
original signal and the models produced by the two iterative methods compared here.
The oscillating behavior of the error when using the iterative prefiltering algorithm was
found to be one of the main disadvantages of using this method. Because the iterative
Prony method is based in minimizing the error between the model and the original signal

13



1000
solid = original sig

Sodashed non-iterative Prony model

E 0i

0 10 20 30 40 50 60 70 80 90 10(

(a)

1000
solid = original signal

500 dashed = iterative prefiltering model

E 07/~

-500 n
0 10 20 30 40 50 60 70 80 90 100

(b)

1500

S1000- solid - original signal
500 d 7hed - iterative Prony modell

n
"0 10 20 30 40 50 60 70 80 90 100

(C)

Figure 4: Segment of recorded underwater sound corresponding to ice cracking and three
ARMA models. (a) Non-iterative Prony model. (b) Iterative prefiltering model. (c)
Iterative Prony model. 14
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Figure 5: Sum of squared errors at each iteration between the original and the models
produced by the iterative prefiltering and iterative Prony methods.

by directly adjusting critical parameters, the behavior of the error tends to be smoother
and to decrease monotonically toward convergence with increasing number of iterations.

In this case the error rises slightly at the third iteration but then decreases monotonically
for the remainder of the test.

5 Conclusions

ARMA models can produce very accurate reproductions of short segments of acoustic
data but the accuracy depends critically on the method used to find the model parame-
ters. Frequently nonminimum-phase models are required to match the data in the signal
domain. Prony's method is convenient to use for ARMA modeling because it finds the AR
and MA parameters separately by solving linear equations. However the model provided
by Prony's method is frequently suboptimal. The iterative Prony method described in
this paper results in a significant performance improvement over the basic Prony method
in practical problems while retaining the separability characterizing the original method.
The new method is based on iteratively moving the poles of the model in directions that
tend to decrease the error between the original and modeled data and has been found

15



experimentally to have excellent convergence properties.
The new method has also been compared with the iterative prefiltering algorithm of

Steiglitz and McBride [7]. Neither method is guaranteed to have monotonic convergence
of the error, but in many cases of testing on real and simulated data, where the true model
order was not known, the iterative prefiltering algorithm had an oscillatory behavior
while the iterative Prony method showed monotonic or near monotonic convergence. The
computational requirements of the two algorithms were compared by testing and counting
floating point operations within the MATLAB implementation. For a complex data set,
the computational requirements for the iterative Prony method are approximately

672P 3 + (24A. + 102)P 2 + (60AN + 46)P + 198N,

where P is the number of poles and N5 is the length of the data, while those for the
iterative prefiltering algorithm are

64(P + Q - 1)3 + 8V,(P + Q) 2 + 10(P + Q)N' + 12N.,

where Q is the number of zeros. In typical problems of models in the range of 8 to 16
poles and zeros the iterative Prony method requires about 25% more operations than
the iterative prefiltering method. However the likelihood of the iterative Prony method
to reach convergence in practical applications can result in running the algorithm for a
fewer total number of iterations and thus an overall decrease in the total computation.
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A Appendix

A.1 Gradient vector g

From (15) it is easy to see that

Oe OR O"T c.TR (29)
=-e -aRc and -- = c (29)Fi ari -ýr7 -ýr-

where ri here represents the real or imaginary part of the ith root. Using (29) and the

chain rule in (17) leads to

N T .r aR aR"7 r O. R 1
Or,• Or•i r~,Op

and explicit evaluation of the partial derivative of the matrix R results in

0
I

OR 2 (rp, + jrl,) def-c = c i(1

OtR, 
3 (rp., + jri,)2  = f1  (31)

(N. - 1) (r+ jrNj,)'-2

where ci is the Ith component of the vector c. Then, using (31), equation 30 can be
written as Owritte = 2Re [e-fI = 2Re [fire] 

(32)
Ory•

Finally, using (32) for i = 1 ... P, the upper partition of (19) becomes

VrQ = 2 Re f e (33)

which is the same as (21).

A similar procedure can be used to obtain the gradient of Q with respect to the

imaginary part of the vector r. Once more, from (29) and the chain rule applied to (17)
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it follows that

8 R = fj (34)

c -T ]R. _ . = _ f (35)

Thus 8T s = ie T f, _ jf.e _ 21m [fre] (36)

and (22) follows.

A.2 Hessian matrix G

An expression for the Hessian matrix G can be obtained as follows. Using a somewhat
more convenient notation (20) can be rewritten as

G = rk ajt r (37)

then substituting (32) and (36) into (37) yields
I-•' ( [e'Tf, + JTe j )eTf -l .... P

G = (38)1 e*f fi~re] j[e-Tf, _ fi-7e] k =1 .. P

Now using the chain rule and both expressions in (29) leads to

-8f.~ Q+ C* 8IRT f + f-T 8R C + ji rEWT KL + C-7,9P-*.f. -T 8P C fT
JrtI art rt rt 8 ~rh a 'R ' BRf 8 rjtE

[ 8. +- ", + ftT OR c + 1t,*Te e [ cT-+ c3R* Tf .- fT 8 tR c affT

LL z, irkL9r1, Ol j L r~ 8ri1k 871&

i= l, ... .P; k= l,...,P (39)
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and from the definition of f, in (31) it is seen that
r 0

0
2

6 (r& + jr,) Ci if i-k
8f• 12 (r& + jrj.)2  (40)

(N. - 1)(N. - 2) (r& + jr,)N'-3

0 otherwise

Thus if si is defined by (24) it is seen that

at = Si 6 ik (41)&%R,

where 6 ik is the dirac delta. In the same way it can be shown that

a f Jstik (42)

These last two expressions together with (31),(34), and (35) can now be substituted in

(39) to obtain

[e* T Sibik + f;Tfi + f:T'7fk + St!'CikI -C'ii + -;f f;'~fk- + 1bi
e[ (rs,6,i +Sfsfi + fs'fi + S Tf 6i] j [' T s,6,k + f Tf, - f~rfi - S7Teb5j

:=1,...,P; k=1,...,P. (43)

Since the elements of the matrix G are formed by additions and subtractions of complex

scalars with their respective complex conjugates, an alternate expression for G is

[ 2Re [f•'T fk] + 2Re [s;T*6 6 kI 21m [f. Tfk) - 21m [s•T •EIk]
G =

-21m[fi- Tfk] + 2Im[s!7ebk] 2Re[f'zfk]- 2Re[S•Teik,]

=i~,...,P; k=1,...,P. (44)

Finally, since the notation in (44) specifies the ikth element of each partition, we notice

that it is equivalent to (25) through (28).
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